Effective Single Photodynamic Treatment of ex Vivo Onychomycosis Using a Multifunctional Porphyrin Photosensitizer and Green Light

نویسندگان

  • Chelsea den Hollander
  • Jasper Visser
  • Ellen de Haas
  • Luca Incrocci
  • Threes Smijs
چکیده

Onychomycosis is predominantly caused by the dermatophytes Trichophyton rubrum, Trichophyton mentagrophytes and Trichophyton tonsurans. The main treatment obstacle concerns low nail-plate drug permeability. In vitro antifungal photodynamic treatment (PDT) and nail penetration enhancing effectiveness have been proven for multifunctional photosensitizer 5,10,15-tris(4-N-methylpyridinium)-20-(4-(butyramido-methylcysteinyl)-hydroxyphenyl)-[21H,23H]-porphine trichloride (PORTHE). This study investigates single PORTHE green laser/LED PDT of varying degrees of ex vivo onychomycoses in a human nail model. T. mentagrophytes, T. rubrum, T. tonsurans onychomycoses were ex vivo induced on nail pieces at 28 °C (normal air) and 37 °C (6.4% CO₂) during 3 to 35 days and PDTs applied to the 37 °C infections. All dermatophytes showed increasingly nail plate invasion at 37 °C between 7 and 35 days; arthroconidia were observed after 35 days for T. mentagrophytes and T. tonsurans. Using 81 J/cm² (532 nm) 7-day T. mentagrophytes onychomycoses were cured (92%) with 80 µM PORTHE (pH 8) after 24 h propylene glycol (PG, 40%) pre-treatment and 35-day onychomycoses (52%-67%) with 24 h PORTHE (40-80 µM)/40% PG treatment (pH 5). 28 J/cm² LED light (525 ± 37 nm) improved cure rates to 72%, 83% and 73% for, respectively, T. mentagrophytus, T. rubrum and T. tonsurans 35-day onychomycoses and to 100% after double PDT. Data indicate PDT relevance for onychomycosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosensitivity and Radiosensitivity of Indocyanine Green on Human Cell Lines MCF7 and DFW

Background & Aims: In this study with the aim of benefiting from non-laser sources in photodynamic therapy, photo and radio sensitivity of indocyanine green as a sensitizer in photodynamic and radiation therapies were investigated. Methods: Based on the broad absorption peak of indocyanine green and using non-coherent light, the experiments were performed on human cells derived from breast canc...

متن کامل

Ablation of Hypoxic Tumors with Dose-Equivalent Photothermal, but Not Photodynamic, Therapy Using a Nanostructured Porphyrin Assembly

Tumor hypoxia is increasingly being recognized as a characteristic feature of solid tumors and significantly complicates many treatments based on radio-, chemo-, and phototherapies. While photodynamic therapy (PDT) is based on photosensitizer interactions with diffused oxygen, photothermal therapy (PTT) has emerged as a new phototherapy that is predicted to be independent of oxygen levels withi...

متن کامل

Photodynamic Therapy: A New Approach to Remove Embryos of the Wistar Rat

Background Photodynamic therapy (PDT) is a promising new cancer treatment strategy which inactivates tumor cells by simultaneoulsy using light and a photosensitizer. The similarity between tumors and newly implanted embryos is notable. Extrauterine pregnancy (EUP) does not have a definite treatment and previous therapeutic options (medical and surgical) have not been effective or suitable. Ther...

متن کامل

Nanoscale Metal–Organic Framework for Highly Effective Photodynamic Therapy of Resistant Head and Neck Cancer

Photodynamic therapy (PDT) is an effective anticancer procedure that relies on tumor localization of a photosensitizer followed by light activation to generate cytotoxic reactive oxygen species (e.g., (1)O2). Here we report the rational design of a Hf-porphyrin nanoscale metal-organic framework, DBP-UiO, as an exceptionally effective photosensitizer for PDT of resistant head and neck cancer. DB...

متن کامل

بررسی اثر فتودینامیکی کمپلکس تتراپیریدینو پورفیرازین روی (II)، بر رده‌ی سلولی HeLa

Background and Objective: Photodynamic therapy is a treatment that uses photosensitizer and intense visible light. When photosensitizers get exposed to a specific light wavelength (preferentially in the red region), they produce reactive oxygen species that are toxic to cells. Recently, attention has been focused on porphyrins and their analogs as photosensitizers. Zn (II) tetrapyridinoporphyra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015